

December 2nd-4th, 2022

AGRICULTURAL TERRACED LANDSCAPE DEGRADATION DRIVEN BY HYDROLOGICAL AND GEOMORPHOLOGICAL PROCESSES

Giacomo Pepe*

Università di Scienze della terra, dell'ambiente e della vita

*email: giacomo.pepe@unige.it

Presentation layout

- Overview on agricultural terraces as ancient practice for cultivation on hillymountainous landscapes a human-modified environments.
- Focus on the hydro-geomorphological functions of agricultural terrace slopes: key elements for soil conservation, water cycle regulation and ecosystems preservation.
- The issue of terraced slope degradation in response to land abandonment: implications in terms of rainfall-induced erosion processes and mass movements.

Analysis of the outcomes from research activities performed within the open-airlaboratory of the Cinque Terre National Park (north-western Italy), one of the most worldwide known examples of terraced landscape.

Presentation of the project StoneWallsForLife, a LIFE EU-project focused on Climate Change Adaptation which is aimed at investigating how the ancient technique of dry-stone walls can be effectively used to improve the resilience of the territory to climate change.

Agricultural terraces

Agricultural practice which allows to obtain flat areas for cultivation in hilly-mountainous landscapes

Terraced slopes with terraces sustained by dry-stone walls in Cinque Terre (Italy)

Artificial drainage works

Agricultural terraced landscapes in the world

Most ancient terraced landscapes (UNESCO (United Nations Educational, Scientific and Cultural Organization) and GIAHS (Globally Important Agricultural Heritage Systems)):

- Vietnam
- Lebanon

Agricultural terracing across the globe taking Mediterranean region as an example

Manarola - Cinque Terre (Italy)

Mallorca (Spain)

Greece

Hydrological & geomorphological functions

Agricultural terraces

- Modification of slope steepness and soil thickness distribution
- Reduction of runoff velocity, hydrological connectivity and of soil erosion
- Increases of rainwater infiltration and of soil moisture
- Modification of surficial water circulation through artificial drainage works (e.g., artificial channels, trenches and ditches)

Agricultural terraced landscape abandonment

Terraced landscape abandonment: comparison between terraced slopes in 1960 (top) and 2011 (bottom) in Cinque Terre (Italy)

Driving factors

- Socio-economic and demographic changes
- Technological changes
- Political changes

Dynamics

- Population migration towards industrialized cities
- Loss of the economic value of traditional farmland practices
- Difficulties in using of heavy machineries in rugged terrains
- Intense cultivation of croplands located in wide flat areas

- Farmland activities interruption
- Replacement of agricultural landscapes by scrublands, woods
- Lack of terrace system maintenance

Evolution of slope terracing after farming abandonment

Hydro-geomorphological implications of agricultural terraced landscape abandonment

Lack of maintenance: agricultural terraces may gradually lose their hydrological efficiency.

- Progressive collapse of dry-stone walls and terrace risers
- Obstruction of artificial drainage channels

Dry-stone walls deformations & collapses

Hydro-geomorphological implications of agricultural terraced landscape abandonment

Lack of maintenance: agricultural terraces may gradually lose their hydrological efficiency.

Development erosion processes (piping and/or gullying phenomena)

(e)

Continuous dry-stone wall disruption

Terraced slope affected by rill erosion

Terraced landscape degradation

terracing after farming Development of mass movements abandonment (mod. from Brandolini 2017)

Evolution

of slope

Agricultural terraced landscape degradation driven by hydrological and geomorphological processes

photo: A. Cev

Hydro-geomorphological implications of agricultural terraced landscape abandonment

A wide range of factors can affect the response of terraced landscapes after their abandonment and the interruption of cultivation (e.g., see Moreno-de-las-Heras et al. 2019).

Geological factors

Bedrock lithology

Climatic factors

Extreme rainfall

Soil thickness

- Antecedent rainfall
- Climate type

Morphological factors

- Slope gradient
- Slope morphometric features

Land use/Land cover (LULC) factors

- Vegetation cover development
- Time after abandonment
- Vegetation disturbance (e.g., grazing & wildfires)

Experiences from Cinque Terre: what we have learned?

Geometrical factors

-

Pedological factors

Terrace height

Organic content

Terrace type

Soil stoniness

Different response to intense rainfall of slopes in different land use conditions

3rd International Symposium on Water, Ecology and Environment – December 2nd–4th, 2022

Terraced landscape declared since 1997 as '**UNESCO World Heritage**' for its "**high scenic and cultural value**" and since 1999 and as national park due to its environmental and naturalistic relevance

Cinque Terre: geological & geomorphological setting

Area extent = 38 km²

Cinque Terre: geological & geomorphological setting

- Small size catchments
- Narrow and deep cut valleys
- Short stream with steep profile
- High erosive & transport power
- Steep coastal slopes & cliffs

Slopes mantled by thin covers of eluvial-colluvial deposits, reworked by human activities over the past centuries.

1 humus; 2 loose eluvial-colluvial deposits; 3 dense eluvial-colluvial deposits; 4 predominantly sandstone bedrock; 5 predominantly pelitic bedrock

3rd International Symposium on Water, Ecology and Environment - December 2nd-4th, 2022

A human-modified landscape: a history of slope terracing

A human-modified landscape: farmland abandonment

Terraced areas covered by shrubs

Terraced areas covered by forest

Land use changes: farmland abandonment

Period 1950-1952 1954 2011 2011	Data sources	Cadastral data	Aerial photographs	Aerial photographs	Landslides inventory
	eriod	1950-1952	1954	2011	2011

 Phase 2
 LULC analysis

 LULC data comparison:
 1950-52 VS 1954
 LULC change detection:
 1954 (AGR) VS 2011

 from Pepe et al. (2019)
 ATD - abandoned terraced slope with dense cover

 ATP - abandoned terraced slope with poor cover
 CTO - cultivated olive grove

 CTV - cultivated vineyard
 URB - urban area

Over ≈ 60 years, 77.4% of agricultural terraced slopes has been abandoned while 21.1% remained cultivated.

LULC setting of the 1954 agricultural area

The response of terraced slopes to extreme rainfall

25 October 2011 rainstorm

Rainfall amount: 500 mm in few hours (6 hours), with peaks of about 150 mm/h

- Hundreds (>700) of shallow landslides
- High landslide densities (locally from 40 to 60 landslide/km²)
 - Shallow landslides evolved in debris avalanches and debris flows
 - Flooding of the two urban hamlets (i.e., Vernazza & Monterosso)

The role of farmland abandonment on rainfall-induced effects

from Pepe et al. (2019)

land use class

- ATD abandoned terraced slope with dense cover
- ATP abandoned terraced slope with poor cover
- CTO cultivated olive grove
- **CTV** cultivated vineyard
- URB urban area

Landslide sources (red dots) inventory map

Landslide Index(%) =
$$\frac{A_{sl}}{A_{LULC}}$$

A_{sl} = area affected by landslides
 A_{LULC} = land use class area

The role of land-use on rainfall-induced effects

Shallow landslide mobilized volumes evaluation

Slope degradation vs time since abandonment vs vegetation growth

from Brandolini et al. (2018)

Experiences from Cinque Terre: from what we have learned to new research perspectives

3rd International Symposium on Water, Ecology and Environment - December 2nd-4th, 2022

STONEWALLSALIFE

The Stonewalls4Life Project:

LIFE EU-project focused on Climate Change Adaptation

 Mission: investigate how the ancient technique of dry-stone walls can be effectively used to improve the resilience of the territory to climate change

Pilot area: terraced surroundings Manarola hamlet

3rd International Symposium on Water, Ecology and Environment - December 2nd-4th, 2022

STONEWALLSALIFE

Research purposes: understand the hydro-geotechnical response of terraced slopes, in different state of management and in different land use conditions (i.e., cultivated & abandoned) **during rainfall.**

Expected results: Seeking for <u>indications on the **best**</u> **condition** able to provide best response to extreme rainfall events.

Terraced slopes hydro-geotechnical monitoring

Monitoring scenarios:

- 1. Currently cultivated terraces
- 2. Abandoned terraces
- 3. Restored terraces with scarce vegetation cover by construction of dry-stone walls using traditional building techniques
- 4. Restored terraces with with scarce vegetation cover by reconstruction of drystone walls using innovative/alternative interventions techniques

STONEWALLSALIFE

Terrace platform

Abandoned terraces to be restored

December 2nd-4th, 2022

THANKS FOR YOUR ATTENTION

To the results showed in this presentation contributed the following working group: Dr. Giacomo Pepe, Prof. Andrea Cevasco, Prof. Pierluigi Brandolini, Prof. Marco Firpo, Prof. Domenico Calcaterra, Dr. Andrea Mandarino, Dr. Emanuele Raso, Dr. Andrea Vigo, Dr. Patrizio Scarpellini & Dr.Francesco Marchese

DISTAV DIPARTIMENTO DI SCIENZE DELLA TERRA,

